ETE720 – BIOMEDICAL OPTICS

COURSE OUTLINE

(1) GENERAL

	1			
SCHOOL	SCHOOL OF ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF MATERIALS SCIENCE AND			
	ENGINEERING			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	ETE720	SEMESTER	7	
		JEHESTER	/	
COURSE TITLE	Biomedical Optics			
INDEPENDENT TEACHING ACTIVI	TIES if credits are awarded for			
separate components of the course, e.g.	WEEKLY	CDE	DITS	
etc. If the credits are awarded for the	TEACHING	G CRE	DIIS	
weekly teaching hours and	weekly teaching hours and the total credits HOURS			
Lectures / Case Studies		3		3
Add rows if necessary. The organization of teaching and the teaching				
methods used are described in detail at (d).				
COURSE TYPE				
general background, special background,	Specialized general knowledge			
specialized general knowledge, skills				
development	No			
PREREQUISITE COURSES:	NO			
LANGUAGE OF INSTRUCTION	GREEK			
and EXAMINATIONS:				
IS THE COURSE OFFERED TO				
ERASMUS STUDENTS				
COURSE WEBSITE (URL)				
	1			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described. Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
 - Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Upon successful completion of the course the student will have acquired:

Specialised knowledge around the optical properties of biological materials as well as around the available optical spectroscopy techniques used for the study of biological material and biological tissues.

Recognition and understanding of basic theory and principles of operation of absorption and scattering spectroscopy techniques, pulse oximetry, photodynamic therapy, flow cytometry and biodetectors.

Skills: Combining knowledge and understanding of the basic principles of biomedical optics the students can choose the appropriate technique and make use of it for the study and analysis of biological material and biological tissues. They can also apply optical spectroscopy techniques to conduct basic research as well as medical technology.

Abilities: By combining knowledge and understanding of the basic principles of biomedical optics, the students can understand the basic principles of operation and other provisions that have not been taught, compare and evaluate their differences, make good use of further literature so that they can take steps to modify, redesign and optimize the techniques / materials used.

General Competences	
Taking into consideration the general competences that the de	egree-holder must acquire (as these appear in the Diploma
Supplement and appear below), at which of the following does	s the course aim?
Search for, analysis and synthesis of data and information,	Project planning and management
with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility
Working independently	and sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others
 Search for analysis and synthesis of data 	and information with the use of the necessary

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Production of free, creative and inductive thinking
- Team work
- Decision-making
- Adapting to new situations
- Project planning and management
- Criticism and self-criticism

(3) SYLLABUS

Optical properties of biological materials. Absorption and scattering spectroscopy. Pulse oximetry. Photodynamic Therapy. Flow cytometry. Biosensors.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face in the class	
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students TEACHING METHODS The manner and methods of teaching are described in detail.	Activity Lectures	Semester workload 39
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Homework Course total	36
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short- answer questions, open-ended questions, problem solving, written work,	LANGUAGE OF EVALUATION: Greek METHOD OF EVALUATION: Written examination.	

essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	

(5) ATTACHED BIBLIOGRAPHY

Suggested Bibliography:

Introduction to Biophotonics, Paras Prasad, 2003. -

Related scientific journals:

- Journal of Biomedical Optics (SPIE) -
- Biomedical Optics Express (OSA)